Search results for "Electrical transport"

showing 10 items of 11 documents

Electrical transport in lead-free (Na0.5Bi0.5)1–xSrxTiO3 ceramics (x = 0, 0.01 and 0.02)

2017

Lead-free (Na0.5Bi0.5)1xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were manufactured through a solid-state mixed oxide method and their ac (σac) and dc (σdc) electric conductivity were studied. It is ...

010302 applied physicsMaterials science02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectrical transportElectrical resistivity and conductivityvisual_art0103 physical sciencesvisual_art.visual_art_mediumMixed oxideGeneral Materials ScienceCeramicComposite material0210 nano-technologyLead (electronics)InstrumentationPhase Transitions
researchProduct

Experimental characterization of electronic, structural and optical properties of individual carbon nanotubes

2014

1/f noiseelectron diffractionelectrical transportcarbon nanotubeoptical spectroscopychemical vapor deposition
researchProduct

Influence of the electro-optical properties of an a-Si:H single layer on the performances of a pin solar cell

2012

We analyze the results of an extensive characterization study involving electrical and optical measurements carried out on hydrogenated amorphous silicon (α-Si:H) thin film materials fabricated under a wide range of deposition conditions. By adjusting the synthesis parameters, we evidenced how conductivity, activation energy, electrical transport and optical absorption of an α-Si:H layer can be modified and optimized. We analyzed the activation energy and the pre-exponential factor of the dark conductivity by varying the dopant-to-silane gas flow ratio. Optical measurements allowed to extract the absorption spectra and the optical bandgap. Additionally, we report on the temperature dependen…

Amorphous siliconThin film materialThin film solar cell Activation energySingle junctionConductivitySettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionchemistry.chemical_compoundElectric conductivitylawMaterials ChemistryThin filmAbsorption (electromagnetic radiation)Preexponential factorGas-flow ratioMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTemperature dependenceHydrogenated amorphous siliconOptoelectronicsElectric propertieQuantum efficiencyHydrogenationOptical data processingDeposition conditionSiliconMaterials scienceActivation energyQuantum efficiencySynthesis conditionVapor deposition SiliconOpticsSolar cellActivation energyDark conductivityCharacterization studieElectromagnetic wave absorptionThin filmDepositionElectrooptical propertieThin film solar cellConductivitybusiness.industryEnergy conversion efficiencySolar cellAmorphous siliconMeyer-Neldel ruleOptical propertieOptical measurementelectro-optical propertiesNanostructured materialSilicon; Solar cell; electro-optical propertiesElectrical transportchemistrySynthesis parameterOptical variables measurementSingle layerConversion efficiencybusinessOptical gap
researchProduct

Location of holes in silicon-rich oxide as memory states

2002

The induced changes of the flatband voltage by the location of holes in a silicon-rich oxide (SRO) film sandwiched between two thin SiO 2 layers [used as gate dielectric in a metal-oxide-semiconductor (MOS) capacitor] can be used as the two states of a memory cell. The principle of operation is based on holes permanently trapped in the SRO layer and reversibly moved up and down, close to the metal and the semiconductor, in order to obtain the two logic states of the memory. The concept has been verified by suitable experiments on MOS structures. The device exhibits an excellent endurance behavior and, due to the low mobility of the holes at low field in the SRO layer, a much longer refresh …

Electron mobilityDynamic random-access memoryMaterials scienceSROPhysics and Astronomy (miscellaneous)Siliconbusiness.industryGate dielectricchemistry.chemical_elementsemiconductor memorySettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionLocalized trapsCapacitorElectrical transportSemiconductorchemistryMemory celllawnanocristalliComputer data storageOptoelectronicsMemory devicebusinessApplied Physics Letters
researchProduct

High-pressure electrical transport measurements on p-type GaSe and InSe

2006

We performed high-pressure Hall effect and resistivity measurements in p-type GaSe and InSe up to 12 GPa. The pressure behaviour of the transport parameters shows dramatic differences between both materials. In GaSe, the hole concentration and mobility increase moderately and continuously. In InSe, the hole mobility raises rapidly and the hole concentration increases abruptly near 0.8 GPa. The observed results are attributed to the different pressure evolution of the valence-band structure in each material. In InSe a carrier-type inversion is also detected near 4.5 GPa.

Electron mobilitystomatognathic systemElectrical transportCondensed matter physicsElectrical resistivity and conductivityChemistryHall effectHigh pressuremacromolecular substancesCondensed Matter PhysicsHigh Pressure Research
researchProduct

Light absorption and electrical transport in Si:O alloys for photovoltaics

2010

Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was …

Materials scienceAbsorption spectroscopyFour-pointAnalytical chemistryGeneral Physics and AstronomyAbsorption coefficientChemical vapor depositionBoron implantationSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiasymbols.namesakeElectrical resistivity and conductivityPlasma-enhanced chemical vapor depositionThin filmAbsorption (electromagnetic radiation)Electrical sheet resistanceSi contentSEMIINSULATING POLYCRYSTALLINE SILICON; SOLAR-CELLS; 3RD-GENERATION PHOTOVOLTAICS; OPTICAL-PROPERTIES; AMORPHOUS-SILICON; THIN-FILMS; CRYSTALLINEOptical absorptionProbe methodElectrical resistivityAlloy depositionSputter depositionElectrical transportsymbolsOxygen-rich siliconRaman spectroscopyOptical gapReflectance spectrumPhotovoltaic
researchProduct

Simulation of the electromechanical behavior of multiwall carbon nanotubes.

2009

The enormous potential of carbon nanotubes (CNTs) as primary components in electronic devices and NEMS necessitates the understanding and predicting of the effects of mechanical deformation on electron transport in CNTs. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the CNT. However, the computational expense of these simulations limits the size of the CNTs that can be studied with this technique, and a direct analysis of CNTs of the dimension used in nanoelectronic devices seems prohibitive at the present. Here a computationally effective mixed finite element (FE)/tight-binding (TB) appro…

Nanoelectromechanical systemsMaterials sciencemechanical deformationGeneral EngineeringGeneral Physics and AstronomyNanotechnologyCarbon nanotubeFinite element methodlaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCondensed Matter::Materials ScienceTight bindingElectrical transportfinite elementlawtight-bindingGeneral Materials Scienceelectron transportElectronicscarbon nanotubeDeformation (engineering)Reduction (mathematics)ACS nano
researchProduct

Superconducting properties of in-plane W-C nanowires grown by He+ Focused Ion Beam Induced Deposition

2021

Focused ion beam induced deposition (FIBID) is a nanopatterning technique that uses a focused beam of charged ions to decompose a gaseous precursor. So far, the flexible patterning capabilities of FIBID have been widely exploited in the fabrication of superconducting nanostructures, using the W(CO)6 precursor mostly in combination with a focused beam of Ga+ ions. Here, the fabrication and characterization of superconducting in-plane tungsten-carbon (W-C) nanostructures by He+ FIBID of the W(CO)6 precursor is reported. A patterning resolution of 10 nm has been achieved, which is virtually unattainable for Ga+ FIBID. When the nanowires are patterned with widths of 20 nm and above, the deposit…

NanostructureFabricationMaterials scienceNanowireBioengineering02 engineering and technology010402 general chemistry01 natural sciencesFocused ion beamIonHelium Ion MicroscopyGeneral Materials Scienceelectrical transport propertiesElectrical and Electronic EngineeringDeposition (law)Superconductivitybusiness.industryMechanical EngineeringsuperconductivityvortexdynamicsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesnanowiresMechanics of MaterialsOptoelectronicsFIBID0210 nano-technologybusinessBeam (structure)
researchProduct

Boron doping of silicon rich carbides: Electrical properties

2013

Boron doped multilayers based on silicon carbide/silicon rich carbide, aimed at the formation of silicon nanodots for photovoltaic applications, are studied. X-ray diffraction confirms the formation of crystallized Si and 3C-SiC nanodomains. Fourier Transform Infrared spectroscopy indicates the occurrence of remarkable interdiffusion between adjacent layers. However, the investigated material retains memory of the initial dopant distribution. Electrical measurements suggest the presence of an unintentional dopant impurity in the intrinsic SiC matrix. The overall volume concentration of nanodots is determined by optical simulation and is shown not to contribute to lateral conduction. Remarka…

Silicon nanodotMaterials scienceSiliconSilicon dioxideBoron dopingInorganic chemistrychemistry.chemical_elementSilicon carbide02 engineering and technologySettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesSettore FIS/03 - Fisica Della MateriaCarbidechemistry.chemical_compoundUV-vis reflection and transmittanceMultilayer0103 physical sciencesSilicon carbideGeneral Materials ScienceElectrical measurementsSilicon rich carbide010302 applied physicsDopantbusiness.industryMechanical EngineeringDopingFourier transform infrared spectroscopySilica021001 nanoscience & nanotechnologyCondensed Matter PhysicsSilicon richOptical propertieElectrical transportchemistryMechanics of MaterialsUV-vis reflection and transmittance Doping (additives)Boron-dopingOptoelectronicsElectric propertieNanodot0210 nano-technologybusinessX ray diffraction Boron carbideMaterials Science and Engineering: B
researchProduct

Effects of mechanical deformation on electronic transport through multiwall carbon nanotubes

2017

Abstract The effects of mechanical deformation on the electron transport behavior of carbon nanotubes (CNTs) are of primary interest due to the enormous potential of nanotubes in making electronic devices and nanoelectromechanical systems (NEMS). Moreover it could help to evaluate the presence of defects or to assess the type of CNTs that were produced. Conventional atomistic simulations have a high computational expense that limits the size of the CNTs that can be studied with this technique and a direct analysis of CNTs of the dimension used in nano-electronic devices seems prohibitive at the present. Here a novel approach was designed to realize orders-of-magnitude savings in computation…

Work (thermodynamics)Materials scienceNanotechnologyCondensed Matter Physic02 engineering and technologyCarbon nanotubeNumerical methodDeformation (meteorology)01 natural sciencesCarbon nanotubelaw.inventionElectromechanical behaviorSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCondensed Matter::Materials ScienceElectrical transportlaw0103 physical sciencesMechanics of MaterialGeneral Materials ScienceElectronics010306 general physicsDirect analysisNanoelectromechanical systemsApplied MathematicsMechanical Engineering021001 nanoscience & nanotechnologyCondensed Matter PhysicsMechanics of MaterialsModeling and SimulationMaterials Science (all)0210 nano-technologyInternational Journal of Solids and Structures
researchProduct